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SUMMARY

The effects of pulsatile amplitude on sinusoidal laminar flows through a rigid pipe with sharp-edged ring-type
constrictions have been studied numerically. The parameters considered are: mean ReynoldsRe)mobire(

order of 100; Strouhal numbe8{ in the range M-398; Womersley numbemw) in the range ®-500. The
pulsatile amplitude &) varies in the range-0-20. The flow characteristics were studied through the pulsatile
contours of streamline, vorticity, shear stress and isobars. Within a pulsatile cycle the relations between
instantaneous flow rat&j and instantaneous pressure gradiepy@d) are observed to be elliptic. The relations
between instantaneous flow rat®)(and pressure losPs) are quadratic. Linear relations exist between
instantaneous flow rat&j and maximum velocity, maximum vorticity and maximum shear stress.
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1. INTRODUCTION

In recent years, pulsatile flows have attracted much attention owing to their increasing relevance in
many engineering and biomedical applications. Unsteady flow through constrictions is of interest to
the designer of unsteady flow metér§he relationship between flow rate and pressure loss across
various types of constrictions provides a means of estimating the mean flow rate from the measured
pressure loss. The principle of unsteady flow has also been frequently applied to heat transfer devices,
since heat transfer can be enhanced by the onset of flow instablititgtudies of intracardiac flow
and stenosis in blood vessels, the pressure loss, maximum flow velocity, shear stress and recirculation
region are parameters of extreme interest because of their relationship with the atheroma caused by
the large pressure drop across the constriction created through artificial implants, the corpuscle
damage due to large shear stress and the thrombus phenomena resulting from the recirculation
region. ” In the above studies, parameters of special interest are the pulsatile freqSeocNgy)
and the pulsatile amplituded).” * However, most of the above studies are on ‘smooth’ sinusoidal
profiles of bell-shaped constrictions. Few have considered constrictions with sharp edges. Hence an
investigation is carried out here to study the effect of amplitulevariation on unsteady flows
through sharp-edged constrictions.

The pulsatile laminar flow in a rigid pipe with a sharp-edged ring-type constriction is used here as a
model for studying the application of fluid device implants in intracardiac flow, unsteady flow meters

CCC 0271-2091/97/030275-16 Received November 1995
© 1997 by John Wiley & Sons, Ltd. Revised March 1996



276 T.S. LEE, T. W. NG AND Z. D. SHI

and unsteady flow heat exchangers. Sinusoidal pulsatile flow is the most common type of unsteady
flow approximated in most engineering applications. Hence the sinusoidal flow in a rigid pipe with a
ring-type constriction is selected as the physical model in the present numerical study.

The objectives of the present work are to investigate the effects of sinusoidal pulsatile amplitude
on the developing flow characteristics in a pipe with ring-type constrictirsi(e 1(a). The effects
of pulsatile frequency will also be considered. The investigation will focus on the variation in the
pressure gradient along the axial direction, the pressure loss in the flow passing through the
constriction, the maximum flow velocity, the maximum vorticity, the maximum shear stress, the
recirculation length and the centreline velocity profiles in the developing flow. The results for the
ring-type constrictions presented here are limitedi t® = 0-5 in opening ratio anc/D = 0-1 in
thickness ratio. The mean flow Reynolds number is of the order of 100. The flow Strouhal numbers
(SY considered are in the range08398, with the corresponding Womersley numbéxsy) in the
range 00-500. The pulsatile amplitudeA] varies from G0 to 20.

2. GROWING EQUATIONS AND NUMERICAL PROCEDURES

The governing equations for axisymmetric unsteady incompressible laminar flow through the
constriction shown in Figure 1(a) are given by: continuity equation,
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Figure 1. Flow in rigid pipe with sharp edged ring-type constriction
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z-direction momentum equation,
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In the solution domain shown in Figure 1(a) the upstream inlet velocity conditions are described by
u(r, t) = 2a(t)[1 — (2r/D)?, o(r, t) = 00. (4)
The bulk inlet velocityt(t) is specified as
G(t) = 1 + Asin(2nt/T), (5)

whereA is the pulsatile amplitude. Equation (5) is plottedrigure 2for different A-values.

At each time step along the solid wall the no-slip velocity condition is specified £y0 and
v=0. Along the central line, axisymmetric conditions are applied to all variables, with
ou/or =0, v =0 andap/ar = 0. At the downstream exit section the dimensionless pressure is fixed
at zero and the flow is considered to be fully developedp s00.0, du/0z = 0 and dv/9z = 0.

In a general curvature co-ordinate systemyj, equations (1)—(3) can be expressed as

G 9

9
E+3—6E—M)+B—W(F—N)—S:O, (6)

where
¢=<&@zn), n=n(r). (7

The variablesG,E, M, F,N and Sin (6) are functions of the physical variables, ¢, p) and the
geometrical variables(r). They are expressed in detail by Jones and Bajaral Marceloet al."’
and will not be repeated here.

The curvilinear velocity components) and V in (6) are related to the Cartesian velocity
componentas andv in (1)—(3) by

U= uéz + Uér’ V= un, + vn,. )
Yo
2 Phdn T~
’ '\\' = 0" - AN
15 ay” \:‘ =0.75 " N
o7 TN = et T NS
’ - = - AR
; A=025
W, *
0.5 N Eate
\\‘ -/'-.
r
o I
[¢] 0.25 0.5 0.75 1 1.25 1.5
vT

Figure 2. Sinusoidal flow with different amplitudes
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The time-dependent term in (4) can be expresséd as

_1 NW2
and the Womersley numbé&tw is then considered as a characteristic non-dimensional parameter of
unsteady flow. The relation between the Strouhal numbBeand the Womersley number is
Nw = ./(27Re St).
Equation (6) is then solved by an iterative process. All the physical varialnlesp) are updated
through

"t = " + 3¢, (10)

wheren andn + 1 are the previous and current iteration numbers respectivelypargresents any of
the physical variables. Substituting equation (10) into (6), the governing equations can be expressed
in incremental form as

a5—G—|ri(($E—éM)+i(5F—(5N)—(SS:—R. (11a)
ot d¢ an
The residual vectoR is calculated using the value of the variable at lavels
n
R_§+ 3+—(E M)" +—(F—N)”—S“. (11b)

LIS

Equations (11) are solved by the SIMPLE aIgorit"Hm)n a non-staggered grid. The grid point
distribution within the solution domain is shown in Figure 1(b). A stretching function is used along
the axial direction,

dz
Gz = Al BE =D, (12a)
with the boundary conditions given by
Z|eo =0, Z|emy = Zpn, (12b)

wherez,, is the maximum length of the solution domain in the axial directionaaddy are two grid
control parameters. At poirit= &; the grid size isAz = z,,aA¢, which can be controlled through the
value ofa. If o < 1.0, the grid will become more clustered at point= ;. The grid distribution in
the zdirection can be further refined through the parameter

With the grid distribution as defined by (12), all terms containing the incremental variables
(6E, 0M, OF, 0N, 6S) are discretized by three-point difference schemes. Hybrid difference schemes
are used for convective terms, second-order central schemes for diffusive terms, first-order forward
schemes for pressure terms and first-order backward schemes of the continuity equation. The residual
vector is calculated by second-order difference schemes: second-order upwind schemes for
convective terms, second-order central schemes for diffusive terms, second-order forward schemes
for pressure terms and second-order backward schemes for the continuity equation. At convergence
the residual vectoR is equal to zero and the convergent results have second-order accuracy. For
points adjacent to the wall the corresponding second-order difference schemes are also used to ensure
consistency of the scheme accuracy.

For the time-dependent terms a modified Crank—Nicolson scheme is used to discretize the
governing equations,

5Gn+l —5Gn

A + 00X 4 (1 - 0)X, = —-R, (13)
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where

X = 3(5E —oM) +3(5F —0N) — oS
aé on

andd is a scheme control parameter ranging frof @ 1.0; 0 = 0.0 is for the time-explicit scheme,

0=1.0is for the time implicit scheme antl=0.5 is for the standard Crank—Nicolson scheme. The

optimum@-value in the present numerical computation is determined from numerical experiments to

obtain stable and convergent results. In the present wotk)-6 is chosen.

Second-order discretizations of the pressure gradient terms and the continuity equation are adjusted
according to the instantaneous main flow direction. This numerical scheme was found to be the most
accurate and numerically stable for the pulsatile flow problems studied here.

The numerical procedure for the pulsatile flow computation adopted in this study can be briefly
outlined as follows.

1. The steady flow is computed and taken as initial condition for the unsteady flow computation.
At the advancement of each time step the initial velocity and pressure fields are given by the
converged values of the previous time step and the boundary values of each variable are
specified.

2. The momentum equations are solved by sweeping in the positive and nagditigetion with
an underrelaxation procedure. The underrelaxation factoB& UThe residual of each equation
is computed. Iteration is continued until the residuals of all the equations redudetmbtheir
values at the first iteration.

3. The residual of the continuity equation is computed and used as the source term of the pressure
correction equation, which is then solved by ADI sweeps. The sweep is repeated until the
residual of the pressure correction equation reduceslt¥h ®f its value at the first iteration.

4. The flow flux at each section in ttedirection is computed. The maximum equation residual
and maximum flux difference from that at the inlet section are obtained. The programme will
return to step 2 when the maximum residual or maximum flux difference is greater-it%ro0
the initial value.

5. At convergence the streamline, vorticity and shear stress fields are computed from the velocity
field. Information about the pressure is obtained from the pressure field.

3. RESULTS AND DISCUSSION

For the computation of the flow field in a pipe with a ring-type constriction, non-uniform grids were
used in the axiat-direction, with more grid points being distributed nearer the constriction as shown
in Figure 1(b). For the radial direction and the time domain, computational grids were evenly
distributed. Grids with 15, 21 and 31 points in thdirection and 81, 101, 121 and 141 points inthe
direction were tested. Grids with 31, 41 and 51 points per pulsatile peF)ad the time domain were
tested for the first three time periods to check on the grid point independency of the numerical results
obtained. Further computations are then based on a grid point arrangement of 21, 121 and &1 in the
z- andt-direction respectively. Computations were carried out for more than one periodic time cycle
for every pulsatile unsteady flow condition considered.

The validity of the numerical procedure and grid size was first checked against available data for
steady laminar flow in a sudden expansion pipe. Test results are compared with similar data from
Reference 12 and 13 for the recirculation length and the wall shear stréssuire 3 The results
indicate that the present numerical procedure and grid size produce accurate results when compared
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Figure 3. Comparison of results on steady flow in pipe with sudden expansion

with known steady laminar flow data. It is thus assumed that a similar procedure and grid size should

also produce accurate results for the unsteady laminar flow cases to be considered here.
Sinusoidal flows with dimensionless amplitudevarying from 00 to 20 were computed for

different Strouhal numbers and Womersley numbEgrgure 4displays typical characteristics of the

development of a sinusoidal flow fiel&t{= 0-04, A= 1.0) with respect to time&/T in a pipe with a

ring-type constriction. It shows the developments of the streamline field, the vorticity field and the

distributions of shear stress and isobars. It should be noted here tHdtadvances from-0 to 1/4,

the forward flow is accelerated to the peak flow velocity. The recirculation lemdihincreases from

its steady flow value to a maximum value. &3 further advances from/4 to 3/4, the forward flow

is decelerated back towards its minimum value ampgD decreases to its minimum value

correspondingly. During the period tfT from 3/4 to 1.0, when the flow velocity is accelerated back

to its maximum value agairt, /D increases from its minimum value back to its maximum value.

Whent/T further advances from-Q to 6/4, the second cycle starts and the flow follows a repeated

pattern. The changes in recirculation length are presentedjine 5for different values of amplitude

(A=0-25-10). The results show that the recirculation region in the unsteady flow domain is not

stationary. For the duration where the instantaneous bulk velocity of the flow field is very small, the
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Figure 5. Relation between flow rate and recirculation length

recirculation region in the flow domain is negligible. For the sinusoidal flow investigated, flow
acceleration and deceleration are of the same magnitude at the same instantaneous f@w rate
However, as shown in Figure 4 through the development of the streamlines and in Figure 5 through
the development of the recirculation length, it is noted that during the deceleration phases the flow
field results in a larger recirculation region.

The centreline velocity is also an important flow characteristic in the study of unsteady flow field
development. As seen iAigure 6for A=0-5 and 10, the centerline velocity distribution along the
axial direction shows a similar periodic change to the unsteady flow field. The time lgyais (
given on each figure. The time step usedis= 1/40. From the study of other figures in Figure 6, for
A=1.0 the flow is nearly stationary at time levels 30 and 32. With the bulk velocity approaching
zero, the recirculation length also approaches zero.

Typical relations between instantaneous flow r@tend instantaneous pressure gradiemtdd
along the axial direction in the fully developed flow regionzAD = 16 are shown irigure 7 The
dp/dzQ instantaneous values show an elliptic relation.

From the above the time-averaged pressure gradigt is obtained from

1.5
dp/dz = LS (dp/dz)dt. (14)

Typical trends and results are presenteétimure 8 As the amplitudéA increases, the magnitude of
dp/dz decreases and approaches a stationary value. The dimensional time-averaged pressure gradient
can be obtained from

dp/dz* = (dp/dz)(Rep)/pD®. (15)

Relations between instantaneous flow r&eand pressure losB,ss across the constriction are
presented irFigure 9for different dimensionless amplitudes. The empirical relationship obtained
through the numerical experiments can be expressed as

PIoss = CplossQ|Q| (16)

where Cpjoss= 150 for St=0.04 andCyjoss= 14-8 for St=0-16.

Variations in time-averaged pressiig,, with respect to pulsatile amplitude are showrFigure
10. Py, is seen to increase with the pulsatile amplitude. However, the difference between the
characteristic trends for Strouhal numbers d@f4and 016 is negligible.
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Figure 6. Centreline velocity development of sinusoidal flows
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Other parametric relations of laminar sinusoidal flow fields that can be obtained through the
present study include linear relations between flow rate and non-dimensional maximum values of
overall flow velocity, vorticity and shear stress. These are expressed as

Upax = 6'88Q(t), Qma>< = 162~26Q(t), Tmax = 1‘05Q(t) (17)

and illustrated inFigures 11-13or St=0.04 and 016. As expected, the maximum flow velocity is
always located on the centerline of the pipe (Figure 11). The corresponding maximum wall vorticity
and shear stress are presenteéiiures 14 and 15-or St=0.04, linear relations betwee@(t) and

both Q, nax andt,, n are given by

Qumax = 16-09Q(1), Tw,max = 0-189Q(D). (18)

The maximum wall vorticity and shear stress are of the order /401and ¥5 of their overall
maximum field values respectively (Figures 12-15). In related biofluid dynamic investigations, such
as intracardiac flow and valvular regurgitant flow studies, information on the velocity field is obtained
from the Doppler echo cardiography technidtie.

4. CONCLUSIONS

The effects of pulsatile amplitude on the flow fields through a sharp-edged ring-type constriction
were investigated foA in the range ®-20, Nw from 0.0 to 500 andStfrom 0-0 to 398. Numerical
experiments show that flow deceleration in the pulsatile cycles tends to enlarge the recirculation
region and this effect becomes more significant with an increase in pulsatile amplitude (or
corresponding increase in Womersley and Strouhal numbers). The corresponding flow acceleration in
the pulsatile cycles tends to increase the pressure drop in the pipe flow. Other more specific flow
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Figure 11. Relation between flow rate and maximum velocity
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Figure 12. Relation between flow rate and maximum vorticity
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Figure 14. Relation between flow rate and maximum wall vorticity
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Figure 15. Relation between flow rate and maximum wall shear stress

characteristics are also observed. The relationship between instantaneous flow rate and pressure loss
across the constriction is quadratic. However, the relationship between instantaneous flow rate and
pressure gradient is elliptic. The time-averaged pressure gradient along the axial direction tends
towards a stationary value when the pulsatile amplitude is increased f@no @0. Other linear
relations exist between flow rate and maximum velocity, maximum vorticity and maximum shear
stress within the pulsatile flow field.

APPENDIX: NOMENCLATURE

pulsatile amplitude
dimensionless pulsatile amplituda/D
orifice diameter
pipe diameter (characteristic length)
constriction thickness

w Womersley numbe./(w/v)

ZS0ae>r9
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p pressure
dp/dz pressure gradient in axial direction

dp/dz time-averaged pressure gradie(r:iI/T)jt“rT (dp/dz)dt

Poss pressure loss across constriction, pressure different between upstream and downstream flow
Ploss time-averaged pressure Io$$/T)jtt+T P)ossdt

Q flow rate, Q(t) = (n/4)D?u(t)

Qmax  mMaximum flow rate, D

r radial co-ordinate, radial distance

Re Reynolds number,e,D/v

St Strouhal numberD /Ty T or (1/2m)Nw?/Re
t time co-ordinate, time-step

T time period of physiological flow

TS time period of sinusoidal flow

u axial velocity component

a(t) instantaneous bulk velocity in pipe
Upeak peaki(t)-value (characteristics velocity)
v radial velocity component

z axial co-ordinate, axial distance

N
=

recirculation length

Greek letters

tp underrelaxation factor in updating pressure

Em co-ordinate variables in general curvature co-ordiante system
v fluid molecular kinetic viscosity

0 density of fluid

T shear stresg;1/Re)(du/ar) + (dv/0z)

Q vorticity, ou/or — dv/oz
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